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LONG-TERM GOALS

To understand the circulation and mixing within the Indonesian Seas associated with topographic
configuration, monsoonal driven sea-air flux of momentum and buoyancy, and tides.

OBJECTIVES

1.  To utilize existing in situ data (XBT/XCTD, CTD, LADCP, mooring time series, tide gauge
records) and satellite data (TRMM, SAR, SST, scatterometer, altimeter) to advance the study of
the spatial and temporal scales of topographically and tidally linked circulation, sea-air fluxes,
and mixing and internal wave phenomenon within the Indonesian Seas.

2. Todevelop in collaboration with Indonesian marine agencies and universities a study of the
regional variability of meso- and sub-mesoscale processes and ocean strait dynamics within the
Indonesian Seas, centered upon field observations.

APPROACH

To analyze in situ and satellite data to identify and assess the relevant regional scale, meso-scale and
smaller processes within the Indonesian Seas, for the development of a small-scale circulation and
mixing study.

WORK COMPLETED

The in situ and satellite data within the Indonesian Seas were analyzed in regard to identifying the
regions where the processes controlling the regional scale circulation, mixing, and ocean-atmosphere
interactions would be most evident. The geographic region that reveals the most sensitivity to the
relevant processes was successfully identified, enabling precise planning of a focused collaborative
oceanographic research program. In Indonesia these results were presented as: “Increasing the Impact
of Wind-Induced Mixing in the Indonesian seas: Upwelling, ENSO, Mindanao and Halmahera Eddies,
and Internal Tides".
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RESULTS

The Seram Sea in the northeastern Indonesian Seas has been identified as the location that is most
revealing of the processes that impact the heat and freshwater inventories within the Indonesian Seas,
and therefore the linkage by sea-air fluxes to the larger scale climate system.

In the eastern Indonesian Seas the precipitation timeseries (Figure 1a) reveals the large variability that
impacts the region annually and interannual. The anomaly of the precipitation timeseries (Figure 1b)
reveals the minimum rainfall routinely observed each year during the southeast monsoon, June-July-
August, and the association of El Nifio years with droughts (1983, 1998) in the region. The Sea
Surface Temperatures (SSTs) in the eastern Indonesian Seas, for example in the Seram Sea (Figure 2),
reveal the relatively dramatic drop to cold SSTs during the windy southeast monsoon, June-July-
August, and the association of the coldest monsoon seasons with El Nifio years.
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Figure 1. The precipitation timeseries for the the northeastern Indonesian Seas (a) and anomaly (b)
revealing minimun rainfall during June-July-August and droughts associated
with EI Nifio years.
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Figure 2. The Seram Sea SST timeseries revealing relatively cold August SSTs with the coldest
years associated with El Nifio years.
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Figure 3. The Seram Sea mean-annual SST with the mean (black curve) and the average of four

relatively warm-August years (red curve, 1988, 1996, 1998, 2000) and four relatively cool-August

years (blue curve, 1982, 1987, 1994, 2007) revealing a greater then 2.0 Celcius interannual spread
as opposed to the less then 0.5 Celsius interannual spread observed in February.

The mean-annual SST in the eastern Indonesian Seas not only reveals the monsoon signal and its
association with EI Nifio years (Figure 3), but also the range in interannual SST response depending on
monsoon season: during the southeast monsoon, June-July-August, the interannual SST variability
range is larger then 2.0 Celsius, whereas during the northwest monsoon, January-February-March, the
interannual variability range is quite small, less the 0.5 Celsius. The map of the Root-Mean-Squares
(RMS) of February SSTs throughout the Indonesian Seas (Figure 4a) reveals that the lowest SST RMS
values are located in the Seram Sea, with less then 0.35 Celsius RMS, in contrast to those during
August when the SST RMS values are largest in the Seram Sea, with values greater then 0.80 Celsius
RMS (Figure 4b).



The map of the August average SST for the Indonesian Seas (Figure 5a) shows the overall cool SSTs in
the eastern Indonesian Seas observed during August, but the August anomaly SSTs with the 4 coolest
Augusts (1994, 1987, 1982, 2007) minus the 4 warmest Augusts (1998, 2000, 1996, 1988) again
identifies the Seram Sea region, with larger then 2.0 Celsius anomaly, as the location with the largest
signal, and therefore most indicative of the controlling processes (Figure 5b). In addition, when
contrasting EI Nifio versus La Nifia years, the ocean temperature profiles in the region reveal the same
trends as the SSTs, with little temperature variability observed in February, 1 Celsius or less (Figure
6a) in the Seram Sea region, but with significant temperature variability in August, up to 4 Celsius
(Figure 6b) in the eastern Seram Sea region. Therefore variability at both seasonal and interannual
timescales is accentuated in the Seram Sea region of the Indonesian Seas distinguishing it as a key
indicator location of the processes that impact the heat and freshwater inventories within the
Indonesian Seas, and therefore the linkage by sea-air fluxes to the larger scale climate system. A
schematic reveals how the varying oceanic conditions that control the depth of the Indonesian
thermocline when subjected to the mixing and circulation processes, even if they were non-varying,
will result in SST variability in the eastern Indonesian Seas (Figure 7).
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Figure 4a. A map of the Root-Mean-Squares Figure 4b. A map of the Root-Mean-Squares
(RMS) of February sea surface temperatures (RMS) of August sea surface temperatures
(Celsius) in the Indonesian Seas, calculated (Celsius) in the Indonesian Seas, calculated

from the Ol SST dataset. Low RMS, of less then from the Ol SST dataset. High RMS, greater

0.35 Celsius, is revealed in the Seram Sea then 0.80 Celsius, is revealed in the Seram Sea.

(magenta region).
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Figure 5. In panel (a) the map of the August average SST (Celsius) for the Indonesian Seas, and in
panel (b) the August anomaly SST with the 4 coolest Augusts (1994, 1987, 1982, 2007) minus the 4
warmest Augusts (1998, 2000, 1996, 1988). In panel (b) the largest SST anomaly, larger than 2
Celsius, is revealed in the Seram Sea region.
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Figure 6a. The February eastern Indonesian seas temperature profiles from XBT data revealing
that there is little variability, 1 degree Celsius or less, in the thermocline during February when
contrasting El Nifio versus La Nifia years.
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Figure 6b. The August eastern Indonesian seas temperature profiles from XBT data revealing that
there is large variability, up to 4 degrees Celsius, in the thermocline during August when
contrasting El Nifio versus La Nifia years.

Figure 7. A schematic of the interrelated oceanic conditions and processes controlling the
variability in the SST in the eastern Indonesian Seas, and therefore through ocean-atmosphere
interaction ultimately impacting the precipitation variability in the region.



IMPACT/APPLICATIONS

The transfer of tropical water from the Pacific to the Indian Ocean through the complex archipelago of
the Indonesian Seas, the Indonesian Throughflow [ITF] is considered to be a first order factor
impacting the heat and freshwater inventories of those oceans, and as such is linked by sea-air fluxes to
the larger scale climate system. Increased understanding of the circulation and mixing within the
Indonesian Seas associated with topographic configuration, monsoonal driven sea-air flux of

momentum and buoyancy, and tides will enable improved estimates of the factors impacting these
inventories.

RELATED PROJECTS

None.



